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ABSTRACT 

We study the dynamics of cosmological phase transitions initiated from a state of thermal 
equilibrium. If the dfective potential satisiies certain general conditions, a homogeneous 
phase of false vacuum will form as the Universe expands, and the transition will proceed 
by well-known bubble nucleation processes. If such conditions do not hold, the Universe 
may instead be i&d with a two-phase emulsion. The evolution of the transition will be 
determined by the free enerv difkrence between the two phases and by the expansion 
rate of the Uti. Thermal fluctuations between the phases will determine the final 
distribution o&gions of the Universe in each phase as they freeze-out. We develop a method 
to study the &uremia of such fluctuations, which we call subcritical bubble+ and apply 
It to several situations of interest, including the symmetric and asymmetric double-well, 
and the Coleman-Weinberg scalar potentials. We show that in certain cases it is possible to 
avoid super-cooling, with the transition being completed by subcritical fluctuations. Possible 
applications to the electroweak phase transition are brieay discussed. 
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1. Introduction 

. 
Since the discovery in the mid-seventies that gauge symmetries are restored at high 

temperatures, the study of phase transitions in the early Universe has been the object of 

much interest1 Within the context of the big-bang model, as the Universe expanded and 

cooled from its initially hot and dense state, symmetries were broken in succession until 

reaching the stage in which particle interactions are well described by the standard model 

group, SU(3)c @ SV(2), @ W)Y. 

As in condensed-matter systems, these cosmological phase transitions may be first or 

higher order. Consider a model with a real scalar field q5 that has both self-interactions and 

interactions with other fields. The dynamics of the scalar field will be determined by some 

finite temperature effective potential V,(d), with q5 playing the role of the coarsegained 

order parameter.2 At high temperatures the system will be in its symmetric (disordered) 

phase, and as the temperature drops the system will experience symmetry breaking, u it 

settles into its ground state (ordered phase). If VT(~) exhibits a &rite barrier between the 

two phases the trausition will be first order. Otherwise, the transition is higher order. 

An example of a first-order transition is shown in Fig. 1. At temperatures T > Z’,, [curve 

(a)] where I”c is the critical temperature for the transition (in general of order the mass scale 

of the model), particles are effectively massless and the Lagrangian is symmetric. The system 

is assumed to be initially in thermal equilibrium with a heat bath at temperature 2’. For 

energy scales well below the Planck scale (Mpl cz 1.2 x 10lg GeV), particle interactions 

will in general occur at a rate much faster than the Universe’s expansion rate, justifying the 

assumption of thermal equilibrium. As the Universe expands and cools, a new minimum 

forms in the potential at a temperature 2’1 [curve (b)]. The temperature continues to drop 

and at Tc the two minima become degenerate [curve (c)l. Notice the barrier separating 

the two minima. As T drops further, the new minimum becomes energetically favored, 
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although the potential barrier ‘traps” the system in the symmetric phase, which becomes 

m&a&able. The Universe will be filled with a homogeneous phase of false vacuum. The 

metastable state decays by nucliation of bubbles of the broken symmetry phase; the bubbles 

expand and coalesce faster than they recede from each other due to the expansion of. the 

Universe and the phase transition is eventually completed. Bubble nucleation occurs both at 

finite and zero temperatures. At finite temperatures, bubbles of the broken-symmetric phase 

can be thermally nucleated within the symmetric phase, triggering its decay. This classical 

process is exactly analogous to the nucleation of droplets in statistical physics,? and has been 

described in the context of field theory by Linde.3 At low temperatures the decay process 

is dominated by quantum nucleation of bubbles, as shown by Coleman4 This mechanism 

is the field-theoretical generalization of barrier penetration in quantum mechanics. We will 

review both the finite and zero temperature false-vacuum decay processes in Section 2. 

This scenario for the cosmological evolution of a first-order phase transition was very 

popular in the early eighties. It was invoked by Guth and Weinberg in the context of 

electroweak symmetry breaking with a light Higgs,S and aIso in the old inflationary model 

proposed by Guth to solve a series of problems of the standard big-bang model.6 It was 

soon realized that in both cases the nucleation of bubbles, thermal or quantum, was a very 

rare process. The phase transition would not complete or would complete after extreme su- 

percooling, both features not very desirable from either a cosmological or a particle physics 

point of view. Metastability should be avoided. The solution was to make the potential 

barrier either very small (hence the term “weakly lirst-order” transition) or disappear com- 

pletely. In the electroweak case, the latter possibility was suggested by Witten, invoking 

quark condensation at temperatures of hundreds of MeV.3 In the inflationary Universe case, 

new inflation was suggested7 using the Coleman-Weinberg potential,8 which has no barrier 

at zero temperatures and a very small one at finite temperatures. However, there is another 

way in which a homogeneous metastable state can be avoided. Namely, ir may not be fomed 
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at all as the Universe cools below TC. This possibility was first raised in the context of new 

inflation, although it can be applied in a wide range of situations, M we will see in this work. 

The scenario for new inflation was criticized in the work of Mazenko, Unruh, and Wald 

(MUW).g They claimed that it was very unlikely that the field would remain localized around 

the origin as the Universe cooled to Z’c, since thermal fluctuations would drive the field toward 

the other minima, overcoming the potential barrier separating them. Their arguments are of 

a general nature and are certainly valid when the field is in thermal equilibrium initially. In 

the particular case of inflation, thermal equilibrium as an initial condition is not guaranteed 

due to the very small couplings of the scalar field to itself and to the thermal bath.1° 

However, if thermal equilibrium holds, one should take MUW’s arguments seriously and 

investigate whether the effective potential indeed develops a met&able state. Recently one 

of us obtained two necessary conditions an dfective potential should satisfy in order thai- a 

homogeneous metastable state form& ’ I) the minimum at high temperatures 2’ > Z’c should 

be located at the same side of the potential barrier as the false vacuum at zero temperatures, 

aa is clearly the case in Fig. 1; ii) the probability that thermal fluctuations of the scalar field 

overcome the potential barrier must be strongly suppressed for Te c T < Tl, so that the 

system gets effectively trapped in the metastable phase as the Universe cools to and below 

Tc. This laclt condition is generally translated into bounds on the typical couplings of the 

model. 

Of course, these conditions are not always satisfied. It is very easy to think of models 

in which they are violated, M shown in Ref. 11. An extreme (and obvious) example is a 

higher-order phase transition that clearly violates condition i). It is then natural to ask how 

does the transition evolve when the~requirements for pletastabiity are not satisfied. The 

generally accepted qualitative picture goes M follows. Assuming for simplicity that VT(~) 

develops only two minima below a certain temperature Tl, (see Fig. 1) thermal fluctuations 

of the scalar field will in principle populate both minima, (i.e., both “phases”) as the tem- 
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perature drops, with the relative probability of finding a certain region of the Universe in 

one phase being determined by the difference in free energy between the two phases. For the 
. 

symmetric double-well potential (SDW) this probability is of course 0.5. The typical size of 

these fluctuations is determined by the correlation length of the scalar field, given by the 

temperature-dependent inverse mass scale of the model. These fluctuations become strongly 

suppressed at the so-called Ginzburg temperature, below which the thermal energy driving 

the fluctuations cannot overcome the potential barrier between the two minima. 

The above qualitative remarks are mostly based on the works by Zel’dovich, Okun and 

Kobzarev,l’ Kibble,13 and Vilenkin,‘4 for the SDW potential, of interest due to the formation 

of domain walls.15 For the asymmetric double-well potential (ADW), qualitative arguments 

concerning the nature of the transition were given in Refs. 16 and 11. It is our belief that 

there are many aspects of this problem that deserve further study from a more quantitative 

point of view. For example, can we build a coherent picture of these thermal fluctuations of 

the scalar field going over the barrier as field configurations that interpolate between the two 

minima at finite temperatures, similar to the ‘bubble” picture in the decay of metastable 

states? If so, can we compute their free energy, estimate the fluctuation rate per unit volume 

and compare it to the expansion rate of the Universe to determine the evolution of the phase 

transition? Or, in a nutshell, can we predict the final outcome of a phase transition simply 

by knowing the effective potential? This paper is an attempt to shed some light on these 

matters. 

This work is organized as follows. In Section 2 we present a review on the decay of 

metastable states at zero and fmite temperature. We start by discussing the onedimensional 

case and generalize it to field theory. We conclude the review with an application of the 

results to the decay of met&able states in an expanding Universe. Readers familiar with 

this subject can skip this Section. In Section 3 we introduce the basic ideas of the paper. We 

motivate our choice of field configurations that represent the relevant thermal fluctuations of 
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the scalar field and obtain the rate equation of fluctuations going both ways over the barrier 

in an expanding Universe. We apply our formalism to the SDW potential in Section 4 and 

to the ADW potential in Section 5. In both cases we obtain analitically and numerically the 

freeze-out temperature for the thermal fluctuations. In Section 4 we compare it to results 

obtained using qualitative arguments, while in Section 5 we estimate the fraction of volume 

of the Universe in each phase at freeze-out. In Section 6 we apply our general method to 

potentials which in principle would form a metastable state. We show that in some csses it 

is possible for thermal fluctuations to inhibit the formation of the met&able state, with the 

transition being completed without any supercooling. We apply these ideas to the Coleman- 

Weinberg potential. Finally, we conclude in Section 7 with a brief summary of our results 

and with an outlook to further work. 



2. False-Vacuum Decay at Finite Temperature 

In this Section we review sOme basic results on false-vacuum decay at zero and finite 

temperature and set up the formalism to be used in the next Sections. We start by examining 

met&ability in a one-dimensional system and then generalize the results to field theory, 

emphasizing the passage from zero to finite temperature. After obtaining the decay rate per 

unit volume for a given temperature T, we apply the resuIts to the problem of false-vacuum 

decay in anexpanding Universe. 

A. Metastability in One Dimension 

Consider a system with a one-dimensional potential V(z) which exhibits two non- 

degenerate minima, zf and zt, separated by a barrier of height Vh located at zmM, as 

shown in Fig: 2. The potentiaI is defined such that V(zf) = 0 and V”(zf) E w;, with the 

prime denoting derivative with respect to 2. wf is the zero-point frequency of osciilations 

around zf. 

Imagine preparing the system such that initially there is a wave packet 1ocaIized in the 

right well with center at zf and with energy E < Vj,. The system starts entirely localized 

in the me&table state. There are two mechanisms by which this state can decay to the 

ground state at Q: At T = 0 or for T a wf, the system would classically behave like a 

harmonic oscillator with frequency wf. However, it is rendered unstable by the quantum 

mechanical process of barrier penetration. At wf < T < Vh, classical thermal fluctuations 

wilI be strong enough to induce a diffusion process over the barrier, destroying met&ability. 

We will bridy obtain the rates for both processes, starting at T = 0. 

In the semi-classical approximation (h + 0), we can use the WKB method to find the 

transmission amplitude across the barrier (ztp is the classical turning point) 

IT(E)1 = A exp -E) 1 , (1) 
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where A is a normalization constant. The same result can be obtained using the language 

of path-integrals, which is more appropriate for applications to field theory. For a given 

unstable state @Z(l) with energy Ef, the decay rate r is given by the imaginary part of 

Ef,17 

l?= +Ef . (2) 

Thus, we must obtain the energy eigenvalue of the unstable state. To do this, one asks what 

is the probability amplitude for a transition between two position eigenstates 1~1) and 14, 

and then rewrites it in terms of a functional integral representation using the Feynman-Kac 

formula,17 

I = (z21CHTfh lz1) = N J[dl~e-s+)ln , (3.1) 

with boundary conditions 

z(T/2) = 22 and 2(-T/2) = 21 , 

N a normalization factor and Sl(z) the oncdimensional Euclidean action, 

sl(.)=~y,;” [;($+v(.)] . 

(3.2) 

(4) 

It can then be shown, taking 1~1) = 122) = Izf) in the evaluation of Sl(z), that the decay 

rate is 

r 31-2 lim *- + in N Jpzp(=)/~ . (5) 

The calculation of the decay rate is reduced to the evaluation of the functional integral I. 

To evaluate I, one uses the well-known semi-classical approximation, for which the dom- 

inant contribution to the transition amplitude comes from the stationary points of Sl(z), 

that is, the solutions of the classical Euclidean equation of motion [equation of motion in 

the potential -V(z)] obtained from 6Sl(z) = 0, 

dV Z=--, 
dz 

with z(T/2) = q and 2(-T/2) = ~1 , (6) 
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where the overdot implies derivative with respect to Euclidean timer. Denote these solutions 

by te. In the semi-classical limit, we must calculate small fluctuations around these solutions. 

Expanding So about zC and keeping terms only up to second order in the guctuations 

AZ = z - zc, 

Z 2 Ne-S~(2~)/n [det, ( -d2/dt2 + v"(z,-))] -"' (7) 

In general there is more than one solution, zC. Apart from the two trivial solutions for which 

z =constant, there is another solution which is of more interest. We can take ~1 = 22 = 21 

and, in the limit T + foe, imagine a solution in which the particle starts at T + -co at 

zf, rolls down the hill -V(z) reaching the turning point ZQ (see Fig. 2) at some time tip 

and then rolls back to rest at zf at T 4 +m. This solution is known as “the bounce”. Let 

us denote it by 3. Using energy conservation, since V(zf) = 0 and the motion starts with 

? = 0, it is easy to obtain the Euclidean action corresponding to Z, 

Sl(a)=$~~~,)t [;($)2+V(z)] =-2l;ds m , (8) 

which reproduces the tunneling action obtained in Eq. 1 with the WKB approximation. The 

final answer is obtained by taking into account that the operator d2/df2 + V(Z) has both a 

zero eigenvalue (from space translation invariance) and a negative eigenvalue (signaling the 

presence of a metastable state), and also by summing over configurations with an arbitrary 

number of bounces. The linal decay rate is 

det(-d2/dt2 + ~3) 1 
112 

det’ [-G/d@ + V”(Z)] e 
-sl(t)/n z A Wf ,-sl@)/n , (9) 

where the prime in the denominator is a reminder to omit zero eigenvalues. For our purposes 

the simplified expression on the right hand side will be sufficient, with A being a constant 

of order unity. 

At temperatures W, < 2’ 5 V,, we expect that thermal fluctuations will dominate over 

quantum fluctuations. The dominant process responsible for the decay of the metastable 
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state will now be thermal diffusion over the barrier ss opposed to quantum tunneling. The 

rate for a thermally activated process can in general be written a 

l-(T) = A u,-~~/= , (10) 

where w is a fundamental fluctuation rate and Ea is the typical activation energy. For the 

potential of Fig. 2, one would naively write 

r.(T) = A&ye-V”/= (11) 

for diffusion processes over the barrier. Indeed, if we consider a Boltzmann distribution of 

particles incident on the barrier from the right with momentum -p, the rate for making 

transitions over the barrier can be identified with the flux of probability over the barrier,‘g 

r(T) = / dp dz(-p)e-~/2+v(z)llT6(z - zmu)9( -p) 
J dp &e-w/2+V(=)l/= 

, 

where 6(z - zmax) gives the location of the barrier and 0(-p) is inserted so that particles 

are only incident from the right. After evaluating the momentum integral, the integral in z 

in the denominator can be approximated by a Gaussian integral (around zf) and the result 

is, 

r(T) N 9,-W= , (13) 

At finite T, the decay rate is controlled by the ratio between the potential barrier height 

Vj and the available thermal energy T. This basic result carries over to field theory, al- 

though the barrier height will be equivalent to the free energy required to ‘excite” a field 

configuration that interpolates between the two minima through the potential’s saddle point 

at V(hd 

B. Metastability in Field Theory 

It is possible to generalize the previous results to field theory. We start by discussing 

zero temperature vacuum decay4 and then include finite temperature effects.3 Consider a 
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scalar field in 3+1 dimensions with a Lagrangian density 

;c = (&d,(P4, - V(4) , (14) 

where V(d) is a potential with similar profile to that of Fig. 2, with a false vacuum at 4 = +f, 

V(4,) = 0, and V”(+f) = rn$ with the prime denoting differentiation with respect to .$. 

The true vacuum is denoted by I+$. According to Coleman, and Callan and Coleman4 the 

decay rate per unit volume is 

det( -0,g + rn!) 

I 

l/2 

det’ [-•g + V”(J)] 
,-s4m/n 2: A m;,-s4(d)/h (15) 

where 0~ = a2/8r2 + v2, A is a constant of order unity, and 

S4(6) = /dr$z ; ($2 + ; (va2 + v(i)] 

is the Euclidean action in four dimensions of 3, the non-trivial solution of 

OEd = v’(d) I (17) 

ktb boundary conditions r&4(r,x) = 41 and ,,,s ~(T,x) = dr. For simplicity we 

only consider the last expression on Eq. 15 for the decay rate. 

The solutions 4 are a straight forward generalization of the quantum-mechanical bounce 

introduced before. The decay rate is obtained by using a semi-classical approximation so 

that the dominant contribution to the functional integral comes from field configurations 

with lowest action. As shown by Coleman, Glaser, and Martir~,‘~ such configurations exhibit 

O(4)-symmetry, allowing the problem to be reduced to one degree of freedom, in the radial 

direction r2 = Ix/? + r2 in Euclidean space. In this case the Euclidean action is simply, 

S4(4) = 2n2 /i3dr[~($)2+V(b)] , 08) 

and the bounce is the solution to the equation of motion 

d2d 3d4~ dV 
p+;z=- dd 
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with boundary conditions ,liy-” = ~$f and $$=n = 0. If we think of 4 ss position and r 

as time, it is easy to see that the bounce is the solution to the equation of a particle moving 

in the potential -V(d), subject to a friction force which is inversely proportional to time. 

The particle is released from rest at 1 = 0 at some initial position di and comes to rest at 

4f at t + 00, bs shown in Fig. 3. 

In describing the properties of the bounce, it is convenient to introduce the false-vacuum 

energy density E = V(qif) - V(h). F rom Fig. 3, it is clear that if E is small compared to 

the potential barrier, s < va, di will be very close to &. In this case, 4 will start rolling 

very slowly down the hill, slowly enough that by the time it actually rolls down, the friction 

term is negligible. This limit is the well-known thin-wall limit. The bounce describes a 

bubble of radius R in Euclidean space with a wall of thickness A N m-l through which:+ 

quickfy evolves from its interior value d N & to its exterior value d _ dr. Thus the decay of 

the homogeneous metastable state is triggered by the quantum nucleation and subsequent 

growth of a bubble of true vacuum, very much like the nucleation of droplets in statistical 

physics. That the bubble can grow is a consequence of a delicate balance between the gain 

in volume energy from being in the true phase, IEvl = ye@ and the deficit in surface 

energy, Es = 47rS1(&R2, where Sl(& = / dr[&dJ/dr)2 + V(J)] is the surface density of 

the bubble. This can be seen explicitly by extremizing the action 

S4W 5 -$d +2&s& (20) 

to find the critical radius Rc = 3Sl/s, for which IEv[/Es = 1. 

If the potential is not nearly degenerate, one must rely on numerical integration of the 

equation of motion to find the bounce. We will show a few examples shortly. First, it is 

useful to make a few comments in this csse. Back to Fig. 3, it is clear that as E increases di 

quickly moves away from &; the friction force, which is a burden in the nearly degenerate 

case, becomes an asset in slowing the downhill motion so that the final position at df is 
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reached as r + 00. The motion now starts at the inclined portion of the hill with reasonable 

acceleration, with the obvious consequence that the bubble radius decreases considerably. 

In fact, in the only exactly soluble model (at least to our knowledge) beyond the thin- 

d 2 wall approximation, with a potential V(4) = -+ [I - lr~(4~/&)], the bounce solution is 

b(r) = &exp(-m2r2/2), and thus has a “radius” R - m-l of the same order as the wall’s 

thickness.20 

As an application of the previous discussion, consider the potential 

V(4) = $ (42 - da>’ + $40 (4 - 4o13 . 

This potential has the same proiiIe M that of Fig. 2. V(d) has a false vacuum at (,$f) = 40 

and a true vacuum at (hi) = -~[(1+20)+(1+12n+4a2)1/2], where a E X2/X1 measures the 

relative asymmetry between the two minima. Defining the dimensionless variables X = 4140 

and p = fiI&r, the Euclidean action becomes 

s4(~)-~~p3dp[t(%)2+v(x)] , 

with V(X) = V(cj)/X& = &X2 - 1)2 + 3(X - 1)3. Bounce solutions for different values 

of the asymmetry parameter (I are shown in Fig. 4, while in Table 1 we show both the value 

of the bounce action 34 G &S4(& and its “radius”, which we define as 

Rs l-/p4 dp [; ($)2+V(X)] . 

It is easy to see that as the asymmetry increases the bounce solution approaches 4(r) 4 

exp(-m2r2/2); the critical bubbles become coreless, as we anticipated in the previous qual- 

ijative discussion.20 

So far we have been dealing with the zero temperature case. In order to describe bubble 

nucleation at finite temperatures, we make the formal substitution r + &r/T in Eq. 16, 

impose the periodic (anti-periodic for fermions) boundary condition 4(0,x) = b(ti/T,x), 

13 



and integrate in the ‘time” direction only in the interval 0 5 r 5 1. The Euclidean action 

is now, 

~=T-1~1d+?+(t$)2+&7@2+Vr(0)] , (24) 

where VT(+) includes finite temperature corrections to V(4). For a model with one scalar 

field it is given by21 

vT(‘#‘) = v(d) + ,‘: --i~z2dlln{1-exp[-(z2+m2(d)/T2)1’2]} , (25) 

where m2(4) E d2V/d42. 

Bach to the expression for the Euclidean action, note that the kinetic term increases 

quadratically with the temperature m $(6$/Bt)2. As we are interested in configurations 

that minimize the classical Euclidean action, for high temperatures it is clear that static (i.+. 

r-independent) configurations will dominate the functional integral. The theory is effective& 

reduced to three dimensions and the Euclidean action becomes 

G(4) T 4 S3(4, T)/T = T-’ /‘+vd2+b(d)] . (26) 

The rate per unit volume for thermal nucleation of critical bubbles is3 

r(~) = T (‘$f$‘) 3’2 [ E!;<;;$;;i;;] 1’2 e-s36T)/= N A m;(qe-Sa(dvr)/= , 

(27) 

where A is a constant, my(T) = d2VT/d421+,, and S3(& T) is the Euclidean action of the 

non-trivial solution of v2d = Vi(+) with boundary condition , yrn 4 = dr. As discussed 

before, the decay rate is dominated by maximally symmetricxm~ions, now with 0(3)- 

symmetry. The finite temperature bounce is then a solution of 

84 2d4 
3 + ;z = v+(4) Y 

with boundary conditions rl& C$ = $r and $I,.=0 = 0. 
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The last expression on the right hand side of Eq. 27 is the approximation to the decay 

rate that we will use in this work. Not surprisingly, the expression for the decay rate is 

equivalent to the general formda for a thermally activated process, Eq. 10. Note that the 

fundamental tiequency of oscillations around df is itself a function of the temperature, 

reflecting the fact that the potential changes with T. S3($,T) is the %ctivation energy” 

for the thermal process. It is equivalent to the free energy of the bubble of true vacuum 

nucleated in a homogeneous phase of false vacuum and represents the free energy barrier 

the system must overcome for the thermal transition to occur.3 It is clear from Eq. 27 that 

thermal fluctuations are a purely classical effect; Planck’s constant has disappeared from the 

decay rate. 

All previous comments describing the properties of the bounce solutions apply here, with 

the main difference that the bounce must now be calculated for each value of T. It is again 

possible to obtain S3($, T) in the thin-wall limit, for which the nucleation rate is, r(T) m 

exp(-16sST/3E2T), a~ result well-known from nucleation theory in statistical physics3 At 

finite temperatures, the thin-wall limit is useful to describe thermal nudeation just below 

the critical temperature, as can be seen from Fig. 1. As T + T,, S3(&T) + 00, since 

the double-well limit is achieved. The same happens as T + 0 since thermal fluctuations 

become strongly suppressed at low temperatures. Typically, S3(&T) reaches a minimum 

at some temperature Tma for which the rate is maximum, increasing steadily for lower 

temperatures until it is overcome by quantum fluctuations at some temperature To. This 

qualitative behavior of the Euclidean action as a function of T is shown in Fig. 5. We can 

now apply these results to the early Universe. 

C. Metastability in the Early Universe 

Let us assume that we are studying a model with a potential that behaves like Fig. 1. 

Within the big-bang model, it is reasonable to sssume that early in the evolution of the 

Universe the temperature was high enough (T B Tc) 30 that the field 4 was “localized” at 
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4 = 0. (More on the notion of localized later.) As the Universe expands and cools, the 

temperature will eventually reach Tc and, if the conditions for met&ability described in 
. 

Ref. 11 are satisfied, the field will remain localized at q5 21 0 below Te. In this cae the 

Universe will be filled with a homogeneous phase of false vacuum and radiation, and its 

evolution will be described by Einstein’s equation [assuming a flat Robertson-Walker metric, 

ds2 = -dt2 + a2(t)(dz2 + dy2 + dz2)] 

i 2 

(3 a 
d==$y$*rl+v,] , (29) 

where the first term in the square brackets is the energy density in radiation (E pra,d) with gr 

degrees of freedom at T and Vo is the false-vacuum energy density. In order for the expansion 

to be radiation dominated, the temperature should satisfy, 

J > l/4 
T>% . (*I 

Otherwise the Universe will enter a de Sitter phase r~ in aationary modeIs. Recall that 

the thermal rate achieves a maximum at a temperature Tmm,~ M shown in Fig. 5. Thus, 

unless thermal nucleation is e&ient at T - Tmrur, the Universe wilI supercool in the false- 

vacuum phase and the decay will occur only by tunneling effects. [This, of course, assumes 

that no new physical e&&s come into play at lower temperatures, modifying the effective 

potential. (Ref. 5.)] In order to estimate if thermal nucleation is an efficient mechanism for 

false-vacuum decay in an expanding Universe, we must compare it with the expansion rate 

of the Universe per unit volume, ru = H4. From Eqs. 27 and 29 we can write, 

w - .v2.3 x 10” (v)’ (~)4,-h(6.T)/F 

ru 
, (31) 

where quantities with a tilde are scaled by &J and g. = 110 was used. From this expression, 

it is clear that only if the ratio between the two rates is of order unity or larger will thermal 

nucleation be effective. For an order of magnitude estimate, setting $0 = IGeV, rir - ?‘, we 

obtain, 

UT) p9 * -3 - S(;T)~160 . 
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As often remarked in the literature, such small bounce actions are uncommon although 

not impossible. (See Table 1. For T = 0 the condition reads S,(J) 2 160.) If such bubbles 

are nucleated, they will expand -with a speed v N E/P,~ and may coalesce, completing the 

phase transition.3 A detailed study of the kinetics of firs&order phase transitions in a radi- 

ation dominated Universe is still lacking, although we will not be tackling these questions 

here. (See however the work of Guth and Weinberg on coalescence in a de Sitter Universe.**) 

This concludes our review on met&ability. The methods we presented are applicable when 

the potential is such that a homogeneous metastable state forms as the Universe cools below 

the critical temperature for the transition. As we remarked in the introduction, even if the 

potential does behave like Fig. 1, the existence of a met&able state is not at all guaranteed. 

Thermal fluctuations of the scalar field may ‘leak” over the barrier to the other accessible 

minimum, destroying met&ability. Those fluctuations are of course of a different .nature 

from the bubbles of the nucleation processes, since they are bubbles of false vacuum being 

nucleated in true vacuum. They are typically small bubbles of ephemeral existence, since 

they are unstable against collapse due both to unfavorable surface and volume energy. Nev- 

ertheless, at high enough temperatures there may be enough thermal energy available to 

excite such field configurations, the typical scalar field fluctuations between the two minima 

of the potential. In the next Section we will motivate the study of such configurations, 

explaining their role in the dynamics of phase transitions and c&ulate their free energy. 
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8. Free Energy of Thermal Fluctuations: General Formalism 

In the last Section we reviewgd the formalism to study the decay of a homogeneous false- 

vacuum state at fmite temperature. Here we will develop a method to study the dynamics 

of the transition when the general requirements for met&ability do no hold: As 2’ drops 

close to Tc thermal fluctuations may populate both vacuum states and the Universe would 

instead be fJled by a twc-phase “emulsion” characterized by the different average values of 

the order parameter around each vacuum. The evolution of the phase transition will depend 

crucially on the relative free energy difference between the two vacuum states, and on the 

ratio between the thermal fluctuation rates between the two states and the expansion rate 

of the Universe. 

A. Sub-Critical Bubbles 

In the usual picture of falsevacuum decay at &rite temperatures, bubbles of true vacuum 

are thermally nucleated in the homogeneous falscvacuum phase and will quickly expand, 

converting false vacuum into true. In order for the bubbles to expand rather than contract, 

it is necessary that the gain in volume energy from the bubble interior being in the lower 

free energy phase overcomes the unfavorabIe surface tension of the bubble. This will happen 

if the bubble radius is larger than the critical radius & for which the two effects balance 

out. As we saw before, the radius of the critical bubble is very sensitive to the energy 

difference between the two minima; the closer to degeneracy the larger the bubble radius, 

with & -+ co fn the limit of the SDW. For nearly degenerate potentials, & > t(T), where 

t(T) = m- l(T) is the temperature dependent correlation length of the field 4, given by 

the inverse temperature dependent mass of excitations around the minimum. For distances 

larger than t(T) correlations in the field are exponentially small.13 Thus, for small asymmetry 

between the two minima of VT(~), critical size bubbles correspond to large fluctuations in 

the free energy. (Recall that the free energy of a critical bubble is given by the O(3)- 

18 



symmetric bounce action defined in Eq. 26.) Their nucleation will be a rare process, and 

me&table states in this case can be quite long lived compared to the typical time scales 

in the system. As the asymmetiy between the two minima increases, the critical radius of 

the bubble decreases and so does its free energy. For large enough asymmetry, the radius 

becomes of the same order as the correlation length of the field, & -+ t(T). These “bubbles” 

are still critical in the sense that it is favorable for them to grow, although the usual picture 

of a bubble becomes somewhat blurred, since the bubble radius becomes comparable to 

the bubble wall’s thickness.20 Such bubbles were discussed in Section 2 and their profile is 

displayed in Fig. 4 for the potential of Eq. 21 at T = 0. As can be seen from Eq. 16 in the 

T = 0 case and Eq. 27 in the finite T case, the decay rate depends exponentially on the 

bubble’s Euclidean action. From Table 1, and in a cosmological context from Eq. 32, it can 

be seen that even for large asymmetries the decay of metastable states is a rare process. 

However, sub-critical sized fluctuations will have lower free energy and will occur more 

frequently. As we are interested in the dynamics of the transition in the hot early Universe, we 

will focus on thermal fluctuations. They wilI certainly play the dominant role in determining 

the outcome of the transition at temperatures close to the critical temperature. what 
then can be said, in general terms, about sub-critical thermal fluctuations? The higher the 

temperature, i.e. the higher the available thermal energy, the more the field fluctuates about 

its equilibrium value. For example, in Fig. 1 at T > Te the volume averaged value of the 

field is d - 0, although locally the field can make large excursions about this value. Also, at 

temperatures ahove Tc the correlation length f(T) - m(T)-l typically decreases like T-l, 

so that the volume of an average fluctuation decresses with T. That the effective potential 

seems to restrict the value of the field closer to the minimum with increasing temperature 

reflects the fact that fluctuations in the field will average out on smaller and smaller scales9 

In practice this means that if we were to measure the value of the field in a volume of the order 

of t3(T), the probability of finding 4 - 0 would be quite small at high temperatures. As 
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the temperature drops, the fluctuation rate decreases and the fluctuation volume increases. 

The localization around 4 = 0 becomes more and more effective, although not necessarily 
. 

efficient. If we continue to follow the evolution of VT(~) as pictured in Fig. 1, we see that at 

T = 2’1 a new locally stable point appears at some value of 4 that we write as (&)T, with the 

subscript t serving a3 a reminder that at T < TC this minimum becomes the global (true) 

minimum and the angular brackets with the subscript T as a reminder that the value of 

(&)T changes with temperature. In the usual picture of met&ability, even though there is 

a new stable point in the potential, thermal fluctuations from 4 = 0 to 4 = (&)T are strongly 

suppressed so that M the temperature drops to TC the field will be homogeneously Localized at 

4 = 0. Thus, the system goes out of equilibrium since in equilibrium the relative probability 

of being in each minima is given by the Boltzmann factor. (More about this shortly.) As we T 

mentioned in the Introduction, this “localization” assumption should be examined in more 

detail. It should be possible to obtain a criterion in order to establish quantitatively for 

a given model when such assumption holds. l1 As a lirst step in this direction, we start by 

discussing what are the expected qualitative properties of such fluctuations. 

Let us assume that for Tc < T < Tl there will be fluctuations from 4 = 0 to 4 = 

(&)T and back. One can picture these fluctuations as an attempt by the system to reach 

equilibrium; as long as there is thermal energy available to induce such transitions, the system 

will try to equilibrate while it is adiabatically cooled by the expansion of the Universe. Of 

course these fluctuations will be quite different from the familiar critical bubbles from false 

vacuum decay. Critical bubbles are energetic.ally favored since their interior is in the state 

with lower free energy. Hence they grow after being nucleated. These fluctuations are not 

energetically favored and are only possible due to the available thermal energy causing the 

fluctuations in the scalar field. However, once they are possible, there will be a non-zero 

probability in a given volumeof tiding the scalar field at 4 = (&)T. The smaller the volume 

we look at, the higher the probability of having this volume in the new unfavored vacuum. 
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Conversely, if we recall that fluctuations in 4 are correlated up to e(T), the maximum volume 

for which there is an appreciable probability of finding 4 in the new vacuum is V,(T) 5 c3(T). 

In other words, the typical mbxm,m fluctuation volume will be determined by V,(T). We 

will soon .argue that these are also the statistically relevant fluctuations. Larger fluctuations 

are possible but exponentially suppressed. (See the review by J.S. Langer in Ref. 2.) 

One may in principle think about these thermal fluctuations as being sub-critical ‘hub- 

bles” of all possible radii, R 5 E(T). Th e reason why we use the word bubble for these field 

fluctuations is because they should still have preferably O(3)-symmetry, since other fluctua- 

tions with less symmetry would cost more free energy. (They are there but are sub-dominant. 

We are not including here nearest neighbor effects that can enhance the fluctuations. In a 

future treatment these contributions should be included.) Of course, there is an absolute 

lower bound on the radius of the fluctuations below which our arguments break down. It 

is related with the ultra-violet cutoff which is implicit when adopting a coarse-gained de- 

scription of the system. Loosely speaking; the spatial derivatives of the field should change 

smoothly within a spatial scale I. [In a lattice description of the field dynamics, the lattice 

spacing plays the role of the ultra-violet cutoff, and the consistency condition reads (lattice 

spacing) < 2.1 A physical requirement for 1 is that it should be the smallest length on which 

a phase can be deed2 A natural choice is the correlation length t(T). Accordingly, we 

make the standard assumption that the statistically relevant fluctuations are the ones of 

correlation volume. The reason for this is simple. For a system in thermal equilibrium, once 

there are regions of the Universe in which the field is at (&)T, there will also be fluctuations 

back to 4 = 0; Within a horizon volume, we may picture the Universe as a 3dimensional 

lattice with cells of volume N c3(T) in which we may find the scalar field at one or the other 

vacuum with a relative probability given by the Boltzmann factor,16,15 

$ N exp(-AFIT) , (33) 

where W: (Wo) is the probability of finding the field at (4:)~ (4 = 0) and AF is the free 
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energy difference between the two minima. (We are neglecting the difference in the oscillation 

frequencies around each minima here. ((T) is in principle different at each vacuum.) As the 

temperature drops, the two phases will compete for dominance, with thermal fluctuations 

between them occurring fast compared to the expansion rate of the Univerx. Thus, relevant 

fluctuations can convert one correlation size region in one vacuum into a correlation size 

region in another vacuum. Smaller fiuctuations within a correlation region are ineffective at 

altering the average relative distribution of cells in each vacuum (in a stochastic description 

of the dynamics, they are the white noise coming from higher momentum modes and usually 

disappear once an averaging over a correlation volume is performed), while larger ffuctuations 

will be sub-dominant. This justifies our taking the dominant fluctuations to be of correlation 

volume. A very schematic illustration of the fluctuation dynamics is shown in Fig. 6. ; 

We should try to clarify what is meant by “dominant” fluctuations. We are interes& 

in computing fluctuations in the scalar field that interpolate between the two vacuum states 

in V-34). These fluctuations can go both ways; ‘a region of correlation volume with 4 = 0 

is converted into a region of correlation volume with 4 = (&)T and vi-versa. That is, 

false-vacuum regions thermally fluctuate into true vacuum regions and true vacuum regions 

thermally fluctuate into falsevacnmn regions. The question then is how to compute the 

free energy of these fluctuations and their rate. In the usual false-vacuum decay picture, the 

computation for the decay rate reduces to estimating the functional integral for the transition 

amplitude between the two states. This is done, as explained in Section 2, by taking a semi- 

classical approximation to the integral, using the fact that the action is minimized by the 

bounce solutions to the Euclidean equations of motion. Here, the sub-critical bubbles are not 

solutions to the equations of motion and we must find criteria that will help us select what 

are the field configurations that give the dominant contribution to the transition amplitude. 

Hence our choice of field configurations with O(3) -symmetry and with volume Vc(T) = 

43(T). Further, we take the point of view that the general formula for a thermally activated 
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process, Eq. 10, is applicable for fluctuations going in both directions.23 The calculation of 

the liuctuation rate reduces to the calculation of E,, the activation energy for the transition, 

which is simply the free energy of the fluctuations that interpolate between the two vacua. 

B. Free Energy of Fluctuations: Anatomy of Sub-Critical Bubbles 

Consider a model with a real scalar field with a potential V,(4) which below the tem- 

perature Tl exhibits two locally stable points at (4f)r and (&)T, like in Fig. 1. (In Fig. 1 

(4f)~ w 0 but this may not be the csse in general, as in the example of Section 5.) The 

probability of a fluctuation of the scalar field around its equilibrium values is 

W(4) = Y(4f(*)h * 4) - exp [-+)(4, T)/T] , 

where S,f(‘)(4, T) represents the change in free energy (or the work done by the system) due 

tothefluctuations A4 = I(4f(l))~-4J around the minima, defined in Eq. 26. In this work we 

will assume that the l-loop llnite temperature effective potential is a good approximation to 

the homogeneous part of the free energy; the minimum of I+( 4) determines the homogeneous 

state of thermal equilibrium of the field 4 at T. For a discussion of the validity of this 

approximation we refer the reader to Ref. 9. 

For small fluctuations, it is possible to make a Gaussian approximation to the free energy 

and estimate W(4)." H owever, we are interested in fluctuations that for T < Tl overcome 

the barrier and thus go beyond the validity of the Gaussian approximation. One possible way 

of estimating S3(4, t) is by using trial functions for the field configurations that interpolate 

between the two extrema. As discussed before, there are three assumptions we adopt to 

describe such fluctuations; first, they are O(S)-symmetric, so that we can reduce the volume 

integral for S3(4, T) to a one dimensional integral in the radial coordinate r. Non-spherical 

fluctuations are certainly present but are assumed to be sub-dominant due to a higher “cost” 

in free energy. Second, they interpolate between the two minima, lixing their beginning and 

end points. Third, they must do this within one correlation volume of the field V,(T) = 
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qC3(T). Based on these assumptions we can ask what is the typical anatomy of such 

fluctuations. To answer this question we invoke the discussion on Section 2 concerning 

ycoreless” bubbles, i.e., critical bubbles that are solutions of the Euclidean equations of 

motion but that, due to the large non-degeneracy in the potential, have radii only slightly 

larger than the correlation length of the field. Such bubbles are shown in Fig. 4 for the 

potential of Eq. 21. Accordingly, we take for the sub-critical bubbles, 

4fdf) = ((4,(f))* - (4t(f)h) e-+‘%)(=) + (4&- , (35) 

where 4fttj(r) denotes a fluctuation of false (true) vacuum inside a true (false) vacuum 

region. This trial function will represent a typical bubble with size t,(,)(T), which will later 

be taken to be the correlation length in the corresponding vacuum. 

Even though the free energy of these fluctuations will depend on the particular model 

we consider, there are a few general properties worth exploring before we go on to apply 

these ideas to different potentials. Using the dimensionless variables X = 4/h and p = r40 

the free energy can be written as 

s,(4,r)=4~~lddp[t(~)2+~=(~)] . (36) 

Examining the integral and taking into account the trial function used, it is clear that the 

gradient term grows linearly with ffft) (T) and the potential term will grow as q(r)(T). We 

can write, in general, 

S3 
f(t) < 

- $ (;)“‘h(T) ((4&T - (4t(,,h)2 [1 +Ar(q(T)$#)] , (37) 

where i(T) E t(T)m(T) and Afct)(T) is a temperature-dependent coefficient which must be 

evaluated for a given potential Q(4) for each of the fluctuations. S3 fft) is the free energy 

for nucleating a region of false (true) vacuum of volume V = 4s1$(~)/3 inside a true (false) 

vacuum region. In general, Afct)(T) > 0 and the free energy is a monotonically increasing 

function of the “radius” P(T). 
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C. Fluctuations in an Expanding Universe: Rate Equation 

In the last subsection we obtained the general expression for the free energy of the 
. 

fluctuations of the scalar field that go both ways over the potential barrier. Now we should 

examine the dynamics of the thermal fluctuations in an expanding Universe. From the 

previous discussion, we can write the rates for the fluctuations per unit time per unit volume 

a.3 

l-f-t E rf 2 m;(T)e-~(~J-)/= (38a) 

for a true vacuum subcritical bubble nucleated within a false-vacuum region, and 

r tm.-f s rt u n&T),-shT)/T 

for a false-vacuum subcritical bubble nucleated within a true vacuum region. Thus, rf(l) 

denotes the rate at which correlation volume false (true) vacuum regions disappear due to 

the nucleation of similar volume regions of true (false) vacuum in their interior. In the limit 

of the SDW, the two rates are the same. We will discuss this case in Section 4. 

We ue interested in following the evolution of the fluctuating regions as the Universe 

expands. Starting at a homogeneous (but locally strongly fluctuating) phase of 4 at its high- 

temperature minimum, we ask how will the system behave as T drops below T1 and a new 

minimum appears. Jf enough thermal energy is available, the system will try to equilibrate 

with fluctuations going both ways until a Boltzmann distribution is achieved. Eventually, 

due to the adiabatic cooling of the Universe, fluctuations are progressively more suppressed 

and may freeze out, fixing the relative volume in each phase. In what follows we present 

a method to describe the dynamics of thermal fluctuations between the two minima using 

the sub-critical bubbles. Our intention is not to obtain precise quantitative results (which 

is probably impossible without large scale computer simulations), but a coherent picture of 

the fluctuation dynamics in an expanding Universe. 
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As we mentioned before, the Universe can be pictured as a “chess-board” with regions 

of both vacua rapidly interconverting with the rates given above. At a given temperature T, 
. 

there will be many correlation volumes inside a horizon volume. For a radiation dominated 

Universe with expansion rate given by Eq. 29, the number of correlation volumes within a 

horizon volume Vx is 

VHfv, 1: (m(T$y3 , 

where a E (4~~9,/45)l/‘. C onsider a volume V > V, but smaller than V, containing many 

regions of false and true vacua. It is convenient to introduce Nf (Nt), the average number 

of correlation volume false (true) vacuum regions in the volume V. Accordingly, the total 

number of correlation volume regions in the volume V is N = Nf+ Ni. The fluctuation rates 

are obtained by simply multiplying the rates in Eq. 38 by V,. Even though V, will change 

with temperature, the change is quite small in the range of temperatures we are interested 

in. We also take V, = t;(T), neglecting the difference between the correlation lengths in 

each vacua. We can then write the Master equations for the rate of change of the average 

number of correlation regions of each vacuum in V M 

2 =I$[-Nfrf + Ntrr] 

dNt 
- = v, [-NTt + Nfrf] dt 

. 

Note that we did not include in the above equations another potentiaI mechanism by 

which false-vacuum regions can be converted into true vacuum regions. Namely, since the 

false-vacuum subcritical bubbles are energetically unfavored, they could be converted into 

true vacuum regions not only by thermal fluctuations but simply by shrinking away. Al- 

though in principle one might think that the time scale for shrinking is faster than for 

thermal fluctuations over barriers, there are quite a few factors that would slow down the 

shrinking. Imagine we are dealing with a theory with only a real scalar field. In this case 
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the dynamics should be described by following the evolution of the scalar field coupled to 

a thermal bath. This coupling acts as an effective friction force (and also noise) which will 

influence the kinetics of the bubble walls .24 In a more realistic situation, one may imagine 

that massless particles will be trapped in the false vacuum, as in ordinary Higgs mechanisms, 

providing an effective kinetic pressure that will slow down or even halt the shrinking of the 

walls rendering the false-vacuum regions stable. This effect was used before in connection 

with the primordial formation of non-topological solitons, *’ although it is apphcable to more 

general situations as well. Accordingly, we will adopt the point of view that the dominant 

time scale is associated with the thermal production of subcritical bubbles. Numerical 

simulations of the dynamics of such configurations are presently under way. 

If we introduce the ratio Y m Nf/Nt, such that in equilibrium, as T -+ 0, Y -P 0 (i.e., 

the system would reach its ground state if it remained in equilibrium until T = 0), the rate 

equation for Y is 
dY 
x= -v,rf (I+ Y) (y - y”4) , (41) 

where Yen is the equilibrium ratio of regions in each vacua, given by Eqs. 33 and 36, 

Y- 2 ucp (- [s,‘M T) - $(A T)] /T> . (42) 

As we are interested in following the distribution of fluctuating regions as the temperature 

drops, it is convenient to introduce the dimensionless “time” variable z z do/T and reexpress 

Eq. 41 in terms of z. The rate equation for Y becomes, finally, 
a 

dY -I 
dz -&-$qI+Y)(Y -Y-j ) 

where zp~ s l.SSg~‘*~o/Mp~. This general formula can be applied to study the dynamics of 

thermal fluctuations for any potential that exhibits two minima below a certain temperature. 

In Section 5 we will apply it to study the dynamics of thermal fluctuations for the the ADW 

potential of Eq. 21 and in Section 6 we will apply it to the Coleman-Weinberg potential. 

Before that we examine the simpler case of the SDW in the next Section. 
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4. Thermal Fluctuations and Freeze-Out in a Double-Well Potential 

In this Section we apply thd ideas developed in Section 3 to the important case of the 

symmetric double-well potential. We obtain the free energy of correlation volume fluctuations 

that interpolate between the two vacua and follow their evolution in an expanding Universe. 

As the potential is exactly degenerate, the two fluctuation rates will be the same and we 

need only to compare it to the expansion rate of the Universe, without having to integrate 

the rate equation. 

Consider the potential of Eq. 21 with the asymmetry parameter A2 set to zero. The free 

energy S3(4, T) is given in Eq. 36, and the finite temperature potential VT(~) is defined in 

Eq. 25 with m*(d) = X1(34*- #)/2. At T = 0 the potential has two minima at (de) = k&. 

For non-zero T the minima~will change as shown in Fig. 7 such that, at Te, d*VT/dQ*l+o =~ 0. 

Using a high temperature expansion for the integral in F.q. 25 valid for T > m(d), we find 

that Tc = 246. This result agreis remarkably well with a numerical evaluation of T,. 

We are interested in studying the dynamics of thermal fluctuations as T drops below 

Tc. For T 5 Tc new stable points appear at (d) = IT as can be seen in Fig. 7. These 

points are separated by a potential barrier of height VT($ = 0) - VT(~ = (4)~). However, 

for temperatures close to Tc there will be plenty of thermal energy to induce fluctuations 

over the barrier. This behavior is well-known from condensed-matter systems. In particular, 

the critical behavlbr of a scalar field with the potential above is the same as that of an Ising 

ferromagnet, for which it is known that domains of spins up and spins down permeate the 

lattice with fluctuations establishing a regime of detailed balance, depending on how the 

system is ~ooled.~ To the best of our knowledge, there has been no attempt to study the 

dynamics of these fluctuations from a quantitative point of view, at least in a cosmological 

c0ntext.l’ Given that the correlation length of the scalar field is t(T) = m-'(T), where 

m’(T) = d2b/d421(~),3 the typical volumeof the correlated domains will be V,(T) = Cy3(T). 
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As discussed earlier, the thermal fluctuation rate per unit volume is taken to be 

r(T) = m4(T)emS3(d*T)fT (44) 

We are interested in fluctuations that interpolate between the two minima. These fluctua- 

tions will be statistically relevant if their rate is faster than the expansion rate of the Universe. 

Eventually, as the Universe expands and cools these fluctuations will be progressively more 

suppressed until they freeze-out at a temperature Tfo. The freeze-out temperature has been 

qualitatively estimated before by Kibble,13~” neglecting the Universe’s expansion. In this 

case, the freeze-out temperature is known as the G&burg temperature, TG. Later we will 

compare the two approaches. In order to obtain r(T) we must calculate S3(4, T), the free 

energy of the fluctuations. As we discussed before, we impose boundary conditions on 4(r) 

such that it describes a coreless bubble with its center in one vacuum at r = 0 approaching 

the other vacuum aS P + 00, with a %izen C z t(T). Of course, fluctuations will go both 

ways with the same rate since the potential is exactly degenerate. It sufilces to estimate 

S3(+, T) for one of the configurations. To obtain the free energy, we use the trial function 

described in Eq. 35, which can be written as 

d(r) = (d)T [2S-‘fco -11 . 

This trial function describes a subcritical bubble of ‘positive’ vacuum nucleated in the 

‘negative’ vacuum. If l(T) E t(T), this bubble actually converts a whole correlation volume 

‘negative’ region into a correlation volume ‘positive’ region. Due to the T-dependent integral 

in VT(~), we cannot estimate S3(q$ t) analytically for all T. Before we present the results of 

the numerical integration for all T, we will obtain the fres energy taking T = 0. As long w 

Tf,, is small enough compared to Tc this approximation should give good results. We will 

see that this is indeed the case. 

For T = 0, it is convenient to define the dimensionless distances p = fi&r, i = 

&doe. Using Eq. 45 with (4)~ = 40, the free energy is, in terms of the dimensionless 
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radius i 

S,(i,0)~;($@-[~ + ~j9+‘*$-laJj)] . (40) 

Note that &(&0)/T > 1 must be satisfied at all temperatures. This condition imposes a 

natural lower bound on the ‘size” of the fluctuations. We must check if it is satisfied for the 

sub-critical bubbles we ard interested in. The correlation length at T = 0 is E-‘(O) = fi&. 

Thus, a correlation length bubble would have e = 1, and the free energy is 

S3(L 0) = $$$, (47) 

So, the condition S3(i, 0)/T > 1 is easily satisfied for all T s Tc. 

We can now calculate the freeze-out temperature for the fluctuations by comparing the 

thermal fluctuation rate per unit volume with the expansion rate of the Universe per t&t 
I. 

volume.-As discussed in Section 2, the freeze-out temperature is defined as the temperattie 

at which the two rates are the same. Using Eqs. 31 and 47, we can write the freeze-out 

temperature p;o z Tf,,/do, as 

” 2: fi [41.1+ lnt/xi- y&/GeV) - 2ln (!i’fo)] ’ 
(48) 

where g+ = 110 was used and the mass scale & is expressed in units of a GeV. In Fig. 8 we 

show how Tfo changes with both the mass scale and the coupling Al. The continuous lines 

use the T = 0 approximation of Eq. 48, while the dots are the results obtained numerically 

using the full temperature dependent potential. In the latter case l”(T) is evaluated at each 

temperature and compared to TV. Notice that, for a given mass scale, as the coupling gets 

weaker Tfo increases. As Tfo approaches the critical temperature Tc = 240, the apgroxima- 

tion of considering only the zero temperature potential becomes unreliable. However, it is 

clear that for small couplings there will be a maximum mass scale above which Tfo > Tc; 

for small enough couplings the thermal fluctuations will never be large enough to overcome 

the barrier separating the two minima. 
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As the cosmological evolution of the double-well potential is related to the formation of 

domain walls, we can consider Tfo as the effective temperature at which walls are formed.13j16 
. 

(It will thus influence the initial density in walls. The same arguments can be used for other 

topological defects as well.) It is interesting to compare our results for Tf., with those 

obtained by Kibble. l3 He estimated Tfo as the temperature below which fluctuations from 

the ordered phase characterized by 4 = (4)~ back to the symmetric phase 4 = 0 are strongly 

suppressed. Accordingly, he wrote 

Tro = [b(O) - VT( @)T)] V,(T) 1 (49) 

where Ve(T) is the correlation volume of the fluctuations. Using a high temperature expan- 

sion for VT(~), and taking K(T) = 4rt3(T)/3, one obtains, 

Pf*= ($A1 + y* . 

For Xl = 1.0, 0.1, and 0.01, one obtains respectively, ?fO cz 0.51, 1.28, and 1.87. Since the 

expansion rate of the Universe is neglected in this approach, the results are independent of 

the rnas scale and only depend on the coupling. However, given its simplicity, this approach 

is useful for order of magnitude estimates of the freezeout temperatures, ‘if care is taken for 

sufficiently high mass scales and small couplings. 
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5. Thermal Fluctuations and Freeze-Out in Asymmetric Double-Well Potentials 

In this Section we apply our method to study the dynamics of thermal fluctuations for 

asymmetric double-well potentials. We start by discussing the finite temperature behavior 

of the effective potential and go on to calculate the free energy of the sub-critical bubbles of 

false and true vacua. We then solve the rate equation both analytically and numerically and 

obtain the freeze-out temperature and the relative fraction of the volume of the Universe in 

each phase for different values of the couplings in the potential. 

A. Finite Temperature Behavior of Effective Potential 

We will adopt the potential of Eq. 21 as our model of the ADW. In the next Section we 

will discuss the elects of couplings of the scalar field to other fields. This potential has no 

reflection symmetry even at tree-level. The cubic term, included to lift the degeneracy, brea$s 

the reflection symmetry explicitly. So, when we analyse the thermal evolution of VT(~), we 

will not speak of a symmetry breaking mechanism but of a possible phase transition in which 

regions of the Universe may be SlIed by the two phases represented by the two minima of 

VT(~). The finite temperature corrections to a potential for a real scalar field were defined 

in Eq. 25 where now, m*(d) = %(3d* -da) +2X2&)(+- ho). For T > m(d), VT(~) cb~l be 

approximated b; 

VT(d) = v(4) - gti + $*(d) , (51) 

where V(d), the T = 0 potential, is given in Eq. 21. The kite temperature behavior of VT(~) 

is shown in Fig. 9. We dejne Tc as the temperature at which a new stable minimum appears 

[curve (c)]. A similar potential was discussed in Ref. 11. Note that the high temperature 

minimum is located to the left of the barrier at T = 0, violating condition i) for metastability 

(see Introduction and Ref. 11). Indeed, from the approximate expansion of Eq. 51, we obtain 

the location of the minimum at high temperatures as 

(52) 
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The asymmetry parameter X2 causes the minimum to be displaced from the origin, toward 

the T = 0 true vacuum. For X2 = 0 we recover the SDW result. Thus, as the Universe cools 

below TC thermal fluctuations hay overcome the potential barrier and populate the false 

vacuum at (4f)~. In this case, the Universe will be filled with a two phase emulsion, with 

fluctuations rapidly converting one phase into another, similarly to the SDW case studied 

before but now with different fluctuation rates between the two vacua. Otherwise, the field 

will smoothly evolve to the true minimum at T = 0 and no false vacuum will form. By 

using the rate equation we will be able to predict, given the parameters of the model, what 

will the outcome of the transition be. Basically, if TfO 2 Z’c fluctuations over the barrier 

will be strongly suppressed and no transition occurs. This fact can have many interesting 

consequences for early Universe physics. In particular, models with an asymmetry may never 

form domain walls, since the field will always be in one phase. . . 

B. Free Energy of Fluctuations 

Let us assume that as T drops below Te thermal fluctuations populate both vacua, so 

that there will be a non-zero probability of finding the field in the new vacuum at (4,)~. 

(The reader need not worry about a potentid Ioophole in this assumption. If the false- 

vacuum regions are never populated we will simply find that there is never equilibrium, i.e., 

the rate for thermal hopping over the barrier will never be faster than the expansion rate of 

the Universe.) Around each stable minimum the fluctuations on the field are correlated up to 

((2’). For non-degenerate potentials the correlation length will be different at each minimum. 

For simplicity, we will take both correlation lengths to be given by mTl(T), the ma at the 

false vacuum. Typically, mr(T) < mt(T). Improvements on this approach can be saved for 

future work. As we explained before, we consider fluctuations that interpolate between the 

two vacua. In Eqs. 35 to 37, we obtained the general expressions for the free energies of 

both configurations of interest. We now simply apply these formulas to the particular case 

of VT($) given by Eq. 21 supplemented by the temperature corrections of Eq. 25. 
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As we remarked before for the SDW, since we do not have an analytical expression 

of VT(~) for all T, we cannot evaluate S3 %m . g in enerd. We will present the results 
. 

obtained both by a full numerical evaluation of the free energies and by considering only the 

T = 0 potentid. As we showed before for the SDW, this approximation should be very useful 

in the cases where Z’f, is sufficiently smaller than ‘Z’=. Consider the potential of Eq. 21. For 

T = 0 it has two minima at (df) = & and at (&t) = -* [(l + 2a) + (1 + 121~ + 4a2)1/z], 

with a E X2/X1. Let us start with S$(dO). It is the free energy of a sub-critical bubble of 

true vacuum inside a false-vacuum region. Its center is at (&) and, as r + co, it approaches 

$0. Using the trial function of Eq. 35, and the expression for the free energy of Eq. 36 with 

the potential of Eq. 21 we obtain, 

S@,O) 5 r t 
0 

112 
(1-Xt)2$@ !G+? 

[ ( 

(~--$)~+$~(19-Xr) ( $1 ;+; ; , 

( ? 
where as before i = LA&, and we will take L WnjL (fi40)-‘, Xt 3 Mtt)lh. The 

finite temperature evaluation of 5$ takes into account the variation of the potential and its 

minima with 2’. It is interesting to note that for large enough asymmetry (in this example 

u 2 0.2) the sub-critical bubble ansatz used above approximates very well the profile (but 

not the value at the center) of the crlticd bubble obtained by fds~vacuum decay techniques. 

(See Fig. 4.) 

The free energy of a false-vacuum bubble inside a true vacuum region is obtained precisely 

in the same WV. Of course, the end points of the configuration are reversed and we must 

add the false-vacnnm energy A s -4(X: - 1)2 - $(Xt - 1)3 in order to obtain a finite energy 

for the bubble. After some algebra, we obtain for the T = 0 potential, 

&e,q s 77 ; ( > 
lyl -xt)2hi[3a+q(1 --t’z + my) (?+ 4) 

41 
+ 4 $3x: - 1) 

( 
-a(l-xt))+a(l-xt)-;x~(xt+l))]~ (54) 
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The reader can verify that the expressions for S3f and Si reduce to the expression for the 

SDW, Eq. 46, in the limit cl = 0. 

Once we have the free energies for both fluctuations, we can solve the rate equation 

obtained in Section 3. As for the SDW case, we obtain results for both the analytical 

approximation of taking T = 0 and for the full numerical integration of the rate equation, 

Eq. 43. 

C. Rate Equation and Freeze-Out 

We start by obtaining an analytical approximation to the freeze-out temperature. This 

approximation is based on the assumption that the system will quickly reach equilibrium as T 

drops below Te and will then track the equilibrium fraction Yen until Tf,. The approximation 

fails as Z’fO -) Tc. In this case we claim that no equilibrium is possible, as is well-known in 

weakly-coupled systems. 

Introduce Y z Y - Yq, the departure from equilibrium. If the departure from equilib- 

rium is small, that is, if the system quickly equilibrates below Tc, we can set &/dz ‘5 0 and 

write Eq. 43 as 
dYq --=_&~(1+P+F)Y . & (55) 

Defining the freeze-out temperature as the temperature at which the departure from equilib 

rium is of order the equilibrium fraction, that is, at Tjo, 6 s Y/Yq m 1, the rate equation 

becomes at Tjo, 

( (56) 

with all quantities evaluated at Tj.,. In order to solve for Tj,, we need an expression for 

Y- = exp[-(S{-S$)/T]. A s in the SDW we, we do not have a simple expression 

for the free energy due to the complicated temperature dependence of VT(~). In order to 

continue with an analytical approximation we again take the T = 0 limit for the potential. 

This approximation should be reasonable if Tfo is sufficiently smaller than T,. Taking 15 = 1 
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we obtain, at freeze-out 

Ye;,; [y$;;r -q , (57) 

where AS3(0) E $(d,O) - Si(r$,O). Using Eqs. 53 and 54 and that at Tfo, Yes = 

exp(-AS3(O)/Tje) we can obtain Tfo for each value of the asymmetry parameter u. The 

results are given in Fig. 10 for X1 = 1.0 and several values of a (= X2 in this cm). Notice 

that as the asymmetry increases freeze-out occurs earlier since the corresponding actions 

increase as well. We show the critical temperature for each value of (I studied. Tc decreases 

as a increases making it progressively more difficult for the system to equilibrate. This trend 

is confirmed by the numerical evolution of the rate equation. The results for the numerical 

calculation are shown in Fig. 10 for a = 0.15 and different mass scales. The agreement with 

the analytical calculation is very good. For smaller values of the quartic coupling, the system 

could still be able to reach equilibrium, although the freeze-out temperatures will approa& 

the critical temperature considerably faster (see results for the SDW) decreasing the fraction 

of volume in the false vacuum. 

Finally, in Fig. il we p-t the results for the numerical evolution of the rate equation 

for (I = 0.15. Note that the relative fraction Y tracks the equilibrium fraction until the 

freeze-out temperature, below which it remains practically constant. By varying the mass 

scale do we can see that the &action of volume in the false vacuum at freeze-out decreases 

with 40. The lower the m.wss scale the slower the expansion rate of the Universe, giving more 

‘time’ for the false vacuum regions to leak back to the true vacuum. 

A question of interest is then what happens with the false-vacuum regions after freeze- 

out. Depending on the relative probability of being in the false vacuum they may or may 

not percolate.*6g26 The percolation probability is roughly pc N 0.3. So, if Y(T/,) 2 0.43 the 

Universe will be permeated by the two phases with a domain wall separating them which 

will eventually start moving toward the false vacuum, wiping it away. If Y(Tjo) 5 0.43 the 

false vacuum does not percolate and the Universe will be in the true vacuum with isolated 
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islands of false vacuum. Of course, in the simple model studied here there is nothing to stop 

the collapse of these regions and they will shrink away. However, in more realistic models 

the scalar field interacts with other fields and the whole picture can be quite different. An 

example already mentioned is the formation of non-topological solitons, where the collapse 

is halted by massless particles. To the determine the abundance of solitons, knowledge of 

Y(TfO) is crucial. From Figs. 10 and 11 it can be seen that percolation is strongly suppressed 

both by the asymmetry in the potential and by the mass scale at which the transition takes 

place. 

In very general terms, understanding the dynamics of the transition depends on our 

ability to track the fraction of volume of the Universe in each phase. In this Section we have 

shown how this is done for a self-interacting real scalar field. In order to study the effects of 

the interactions with other fields in situations in which there is symmetry breaking, in the 

next Section we study the Coleman-Weinberg potential. We show that the dynamics of the 

transitions can be quite different from the cases andysed so far. 
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0. Escaping Metastability 

In this Section we will apply thd method developed in Section 3 to the Coleman-Weinberg 

potential.* We will show that below a certain mass scale, it is possible for the transition to be 

completed by sub-critical bubbles without any supercooling. For the sake of definiteness (and 

not of conviction) we will use the minimal SU(5) model and will only include interactions with 

the gauge fields. This example exhibits ,symmetry breaking through radiative corrections 

and was very popular in the early eighties in connection with the new inflationary models.7 

(Although here we assume thermal equilibrium.) It should serve as a simple enough prototype 

in order to show how a met&able state may never be formed in the evolution of a phase 

transition even though one would naively assume so. 

To one loop order, the finite temperature effective scalar potential is 

Vi-(d) = Bd’ b (d2/&) - ;] +$+ irn & z% { 1 - exp [ - ( z2 + 25g2d2/8T2) 1’2] } 

VW 
where B E -m 1 24z g4, g is the gauge coupling constant, and the adjoint Higgs field, @, is 

written as 4(1,1,1, -4, -#). & fixes th e mass scale of symmetry breaking. In Fig. 12 we 

show the potential above for different temperatures. Note that at high temperatures the 

minimum is at.4 = 0, and as the temperature drops to T = Tl a new minimum is formed 

which becomes the true minimum, (&)T, for T < Te. At T = 0 the barrier disappears and 

(&)T = $0. The question we wish to examine is the formation (or not) of the metastable 

state at 4 = Pas the temperature drops below Tc. Can subcritical bubbles populate the 

new minimum as T I T1 such that as Tc is approached there will be an appreciable fraction 

of the volume of the Universe already at the true minimum? Will it be above percolation 

threshold allowing the transition to be completed? 

Introducing the dimensionless variables !? = T/gdo, X = $/do, and p = g2doT, the free 
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energy (Eq. 36) can be written as 

S3(4, T) =. y /p2dP[(~)2+v~w] . 
The free-energy scales with ge2, a well-known result. For weak couplings transitions over 

barriers are suppressed and equilibrium between the two phases more difficult. Using the 

dimensionless temperature ? it is possible to show numerically (a high temperature expan- 

sion, although widely used, is very unreliable here) that T1 N 0.66g&, while the critical 

temperature is Tc N 0.55gdo. 

Unfortunately in the present case it is not possible to calculate the free energies of the 

sub-critical bubbles analytically due to the complexity of the potential. Also, we cannot use 

the T = 0 approximation to obtain the freeze out temperature since we are interested in 

temperatures around Tc. The work has to be done numerically. Accordingly, we evaluated 

with the potential of Eq. 58, for T 5 Tl, the free energies for the sub-critical bubbles going 

both ways over the barrier using Eqs. 35 and 37. With the free energies S{(s), we evolved 

the rate equation, Eq. 43, and obtained the fraction of volume of the Universe in each phase 

(4 = 0 or q4 = (&)T) at freezeout, Tte. 

The results are shown in Fig. 13 for different mass scales and for g = 1. (We will not worry 

here about the running of g since our intention is to illustrate our method and not to examine 

this model in detail.) For high mass scales, ~$0 5 l@ GeV we can see that no equilibrium 

is ever achieved and our numerical integration is unreliable. The fraction Y should track, 

at least initially, the equilibrium fraction Yes. For those mass scales, met&ability becomes 

a problem of initial conditions. As the mass scale drops, equilibrium can be achieved and 

we notice that for & = 1015 GeV freeze-out occurs for 2’ < Tc with a relative fraction 

Y(TfO) N 0.4, right around the percolation fraction, M we explained in the last Section. 

Thus, the Universe will consist of very large true and false-vacuum regions, with the false- 

vacuum regions quickly being wiped out due to their higher free energy. (The actual kinetics 
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may be quite complicated due to the mass gap of particles between the symmetric and 

broken-symmetric phases.) The phase transition can be completed without a metastable 
. 

state being formed at d = 0. As the mass scale drops even further, the true vacuum regions 

very quickly dominate the volume of the Universe. For &J = lOI GeV at Tj, only about 

1% of the volume of the Universe remains in the false vacuum. From our results and within 

the approximations of our method, it is quite clear that at least in this and similar modeIs, 

the formation of met&able states must rely on weak couplings and/or very early time scales 

for the transition. 

7. Conclusions and Outlook 

In this paper we presented a method that can be used to follow the evolution of phade 

transitions in an expanding Universe. We considered systems with interactions described by 

a potential which exhibits two stable minima below temperatures roughly of the order of 

the mass scale &. At temperatures well above the critical temperature of the transition the 

system is in thermal equilibrium with a thermal bath with the quihbrium state determined 

by the extremum of the homogeneous part of the free energy (i.e. the temperature corrected 

potential). As the Universe expands and the temperature drops, a new minimum appears 

in the free energy and the system goes out of equilibrium (Fig. 1). Driven by the available 

thermal energy of the bath, the system will try to reach equilibrium by means of transitions 

between its two possible states. Our method consists in estimating the free energy of these 

transitions, which we dubbed sub-critical bubbles, and in solving a rate quation which 

determines the dynamics of this equilibration mechanism as the Universe expands and cools. 

In order to evaluate the free energy of the field configurations that interpolate between the 

two minima we made three assumptions. The statistically relevant fluctuations exhibit O(3) 

symmetry, are roughly of a correlation volume, and interpolate between the two minima of 

the homogeneous free energy. These fluctuations are thus different from the familiar critical 
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bubbles of false-vacuum decay mechanisms. We are not interested in studying the decay 

of a homogeneous fake vacuum, a well-known topic, but instead in studying, among other 
. 

things, the conditions that lead to the formation of such states. 

We applied our method to three situations of interest. We started with the symmetric 

doublowell (Fig. 7) for which the free energy of the transitions going both ways over the 

barrier is the same. In this case it is sufficient to compare the thermal Buctuation rate to 

the expansion rate of the Universe. Next we applied the method to the asymmetric double- 

well, for which the free energy of the configurations interpolating between the two minima 

is, of course, different (Fig. 9). In both cases we performed both analytical and numerical 

calculations of the freesoout temperature, below which the fluctuations are strongly sup- 

pressed. We studied the dependence of the freeze-out temperature both on mass scales and 

on couplings of the models. For the asymmetric double-well, we evaluated the fraction of 

the volume of the Universe in each phase at freeze-out. We show that for high energy scales 

and/or for weak couplings equilibration never obtains. 

Finally, we applied our method to the Coleman-Weinberg potential in the context of 

the standard SU(5) model. This is a very interesting case since it is believed to exhibit a 

metastable state at the symmetric phase (d = 0, see Fig. 12) as the temperature drops below 

the critical temperature. By using our method, it is possible to study the dynamics of the 

thermal fluctuations and to quantitatively estimate , within our approximations, what is the 

fraction of the volume of the Universe in each phase at freeze-out. Our results indicate that 

for mass scaler below or around 1015 GeV a metsstable state never forms and the transition 

is completed by the percolating sub-critical bubbles at freeze-out. 

Understanding the dynamics of primordial phase transitions is clealy of topical impor- 

tance if we want to develop a coherent picture of the physical processes that took pIace in the 

early Universe. An example of great interest is the possibility of producing the baryon asym- 

metry in the electroweak phase transition. 27 One of the conditions for a successful scenario is 
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precisely that the system goes out of equilibrium around the electroweak scale. Two recent 

scenarios naturally invoked a first-order transition to satisfy this condition. 28 Our method . 

should be a useful tool in order to test if these or any other models proposed truly develop 

a met&able state at the desired energy scale. In the same way that the finite temperature 

sphaleron scenario gained support from numerical computations on the lattice, 2g our method 

should also be tested numerically. Simulations of the dynamics of sub-critical bubbles are 

currently under way.3o 
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Table Caption 
. 

The bounce action 34 = &Sd($) and radius (defined in Eq. 23) for different values of the 

asymmetry parameter a. 

Figure Captions 

Figure 1: Temperature evolution of effective potential for a model that may exhibit a 

metastable state. In curve (a) T > Tc; In curve (b) a new locally stable point appears at 

T = T1; In curve (c) T = Tc and the two minima are degenerate; In curve (d) T = 0. 

Figure 2: Asymmetric double-well potential 

Figure 5: “Upside-down potential” that appears in Euclidean equation of motion. 4i is 

the value of the scalar field in the center of the bubble. 

Figure 4: Bounce solutions for potential of Eq. 21 for different values of the asymmetry 

parameter a. Note that for large enough asymmetry the bubble picture becomes invalid. 

Figure 5: Qualitative behavior of free energy of critical bubbles with temperature. For 

T s TO quantum nucleation dominates over thermal nucleation of critical bubbles. 

Figure 8: Nucleation of correlation volume sub-critical bubbles inside correlation volume 

regions of a given phase is pictured as the dominant mechanism by which the two phases 

interconvert. Smaller size bubbles are not effective in altering the average distribution of cells 

in each phase. 

Figure 7: Temperature behavior of double-well potential. The critical temperature is 

defined as the temperature at which the origin becomes an inflexion point. For the present 

model, Tc 21 240. 
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Figure 8: Freeze-out temperatures for different mass scales for the double-well potential. 

Note that for small enough couplings and/or large enough masses Tfo approaches T,. In this 

case, no equilibrium is possible and the vacuum structure is fixed at T,. Numerical results 

are indicated by dots. 

Figure 9: Temperature behavior for the asymmetric double-well potential of Eq. 21. 

The parameters are X1 = 1.0 and X2 = 0.1. Note how the high-temperature minimum [curve 

(a)] is biased toward the zero temperature true vacuum [curve (d)]. At T = T, a new locally 

stable minimum appears. [Curve (c).] 

Figure 10: The freeze-out temperature as a function of the mass scale and different 

asymmetry parameter a. Numerical results are indicated by dots. 

Figure 11: Results from the integration of the rate equation are shown for several 

msaa scales. The volume fraction tracks the equilibrium fraction until freeze-out occurs. The 

asymmetry parameter is a = 0.15. For small mass scales, the fraction of false-vacuum regions 

in the Universe is negligible. 

Figure 12: Temperature dependence of the Coleman-Weinberg potential for the atan- 

dard SU(5) model. For T < Tc (dotted line), the symmetric phase can become met&able. 

Figure 13: The volume fraction as function of inverse temperature for the Coleman- 

Weinberg potential. For mass scales below 10’” GeV, most of the volume of the Universe is. 

in the true vacuum and the transition is completed without the formation of a metaatable 

state at the syvlmetric phase. 
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